Isometric Differentiable Functions on Real Normed Space
نویسندگان
چکیده
منابع مشابه
Isometric Differentiable Functions on Real Normed Space1
From now on S, T ,W , Y denote real normed spaces, f , f1, f2 denote partial functions from S to T , Z denotes a subset of S, and i, n denote natural numbers. Now we state the propositions: (1) Let us consider a set X and functions I, f . Then (f X) · I = (f · I) I−1(X). (2) Let us consider real normed spaces S, T , a linear operator L from S into T , and points x, y of S. Then L(x)− L(y) = L(x...
متن کاملDifferentiable Functions into Real Normed Spaces
The notation and terminology used here have been introduced in the following papers: [12], [2], [3], [7], [9], [11], [1], [4], [10], [13], [6], [17], [18], [15], [8], [16], [19], and [5]. For simplicity, we adopt the following rules: F denotes a non trivial real normed space, G denotes a real normed space, X denotes a set, x, x0, r, p denote real numbers, n, k denote elements of N, Y denotes a ...
متن کاملDifferentiable Functions on Normed Linear Spaces1
In this article, we formalize differentiability of functions on normed linear spaces. Partial derivative, mean value theorem for vector-valued functions, continuous differentiability, etc. are formalized. As it is well known, there is no exact analog of the mean value theorem for vector-valued functions. However a certain type of generalization of the mean value theorem for vectorvalued functio...
متن کاملThe Differentiable Functions on Normed Linear Spaces
The notation and terminology used in this paper are introduced in the following papers: [20], [23], [4], [24], [6], [5], [19], [3], [10], [1], [18], [7], [21], [22], [11], [8], [9], [25], [13], [15], [16], [17], [12], [14], and [2]. For simplicity, we adopt the following rules: n, k denote natural numbers, x, X, Z denote sets, g, r denote real numbers, S denotes a real normed space, r1 denotes ...
متن کاملCompletions of normed algebras of differentiable functions
In this paper we look at normed spaces of differentiable functions on compact plane sets, including the spaces of infinitely differentiable functions considered by Dales and Davie in [7]. For many compact plane sets the classical definitions give rise to incomplete spaces. We introduce an alternative definition of differentiability which allows us to describe the completions of these spaces. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Formalized Mathematics
سال: 2013
ISSN: 1898-9934,1426-2630
DOI: 10.2478/forma-2013-0027